
Let the CI spot the holes in tested code with the

Descartes tool

Oscar L. Vera-Pérez

Inria Rennes - Bretagne Atlantique
Rennes, France

oscar.vera-perez@inria.fr

Benoit Baudry

KTH Royal Institute of Technology
Stockholm, Sweden

baudry@kth.se

Vincent Massol

XWiki
Paris, France

vincent@xwiki.com

Abstract

This documents contains complementary notes for the tutorial “Let the
CI spot the holes in tested code with the Descartes tool”. It explains the
main concepts surrounding mutation testing and the recently proposed
extreme mutation. It also describes Descartes a tool to detect pseudo-
tested methods. We welcome all feedback and suggestions to improve this
document.

1

1 Introduction

Test automation is a common practice in software development nowadays. Test
artifacts are often as large or even larger than the main codebase. Tests are being
written for different scopes and different levels of abstraction and granularity:
unit tests, integration tests, system tests, end-to-end tests, performance tests,
etc.

Test cases are expected to cover the requirements of the application under
development. They are also expected to stress the application and prevent
regressions. Overall they are designed and executed to find bugs before the
code goes to production.

Most tests are automated with the use of libraries designed for the matter.
A typical JUnit test case is shown in Listing 1. It is a method that initializes
the program in a specific state , triggers specific behaviors (Line 5 to Line 9)
and specifies the expected effects for these behaviors through assertions (Line 7
to Line 9).

1 class CharSetTest {
...

3 @Test
public void testConstructor () {

5 CharSet set = CharSet.getInstance("a");
CharRange [] array = set.getCharRanges ();

7 assertEquals("[a]", set.toString ());
assertEquals (1, array.length);

9 assertEquals("a", array [0]. toString ());
}

11 ...
}

Listing 1: A test case of the class CharSetTest taken from commons-lang

The quality of a test case depends on how well the input has been chosen
and how strong the assertions are. But, being the test suite a piece of software
as well, How can developers and testers be sure, that the test suite does what it
is supposed to do? How can they be sure that the test suite is adequate enough
to spot bugs in the codebase?

2 Code coverage

One of the most used criterion to assess the quality of a test suite is to compute
the percentage of instructions in the codebase that are executed (covered) by
the test suite, known as code coverage. Code coverage is widely used because it
is relatively easy and cheap to obtain. It just requires to instrument the source
code and does not add a great overhead in terms of execution time. There are
several tools available for most programing languages. For Java programs it is
possible to use JaCoco1, Cobertura2, OpenClover3, just to mention a few. Many
IDEs support code coverage computation out of the box (IntelliJ) of via plugins

1https://www.jacoco.org/jacoco/
2https://cobertura.github.io/cobertura/
3http://openclover.org/

2

https://www.jacoco.org/jacoco/
https://cobertura.github.io/cobertura/
http://openclover.org/

(Eclipse). Most of these tools are also available for Continuous Integration
Servers such as Jenkins or Travis.

Code coverage is useful to determine the parts of the code that are not
tested. Listing 2 shows a method that computes the factorial of a given number
and Listing 3 shows a test suite designed to check this method. Code coverage
is helpful to notice that the test case in Line 2 executes all instructions of the
method body but the return instruction in Line 3, which means that the corner
case where the input is 0 is not being tested. Therefore, the test case in Line 8
is needed to achieve a full coverage and execute the corner case.

long fact(int n) {
2 i f (n==0)

return 1;
4 long result =1;

for(int i=2; i<=n; i++)
6 result=result*i;

return result;
8 }

Listing 2: A method to compute the factorial of a given number

@Test
2 factorialWith5Test () {

long obs = fact (5);
4 assertTrue (5 < obs);

}
6

@Test
8 factorialWith0Test () {

assertEqual (1, fact (0));
10 }

Listing 3: A test suite to check the factorial implementation

But a high percentage of code coverage does not necessarily means that the
test suite is effective. It can be expected that, in a well tested codebase, the
test suite achieves a high coverage but the opposite is not true in general. In
an extreme case, all the assertions included in a test suite could be removed
and then the test suite would be able to produce the same coverage as before
without actually verifying anything. Moreover, achieving a 100% coverage is an
unrealistic goal that can lead to an important waste of resources and efforts and
actually not needed in the general case.

2.1 The XWiki experience

The XWiki Project4 builds a Java platform for developing collaborative appli-
cations using the wiki paradigm. Its main codebase if composed of 3 Maven
multi-module projects with more than 40 submodules each. As an example, the
xwiki-rendering has 37571 LOCs in the main codebase and 9276 LOCs in their
test code, implementing 2247 test cases. They have a very solid testing practice
that combines custom JUnit test runners, and build profiles dedicated only to
check the quality of their products. The development process is monitored in a
Continuous Integration fashion, using a Jenkins instance5.

4http://www.xwiki.org/
5https://ci.xwiki.org/

3

One of the jobs devoted to check the quality of the project monitors code
coverage. Each module in the codebase has a predefined threshold and the code
coverage can not decrease below this value, otherwise the build will fail. In this
way, if a developer adds some code she has to also provide new tests cases so
the coverage ratio remains above or equal the predefined value. If a developer
achieves a coverage above threshold, then she is given the possibility to raise
the value for the module. In this way it is ensured that the code coverage never
decreases and this is what they call the Ratchet Effect. This strategy has led
to an effective use of the code coverage metric. They report an increase from
74.07% to 76.28% of code coverage in little less than 11 months6.

3 Mutation testing

DeMillo et al. [5] proposed a different criterion to evaluate a test suite known as
mutation testing, mutation analysis or originally program mutation. It consists
on introducing subtle faults in the program under test in the form of common
programming errors and then verify if the test suite is able to detect the planted
changes. Each program variant created after introducing a fault is called a
mutant. A mutant is said to be live if it is not detected by the test suite
otherwise it is said to be killed.

Mutation testing is based on two main assumptions:

• Programmers create programs that are close to being correct. That is,
competent programmers make small mistakes. (The competent program-
mer hypothesis)

• A test suite that detects all simple faults can detect most complex faults.
That is, complex errors are coupled to simple errors. (The coupling effect)

The model of faults that are introduced in a program, often called as mu-
tation operators, are designed according to these two assumptions and target
the most common mistakes that programmers tend to make. Typical mutation
operators would change a comparison operator by other, change an arithmetic
operator, slightly alter the result of a method or change a constant value. Listing
Listing 4 shows two examples of mutants that could be created for the method
in Listing Listing 2. Notice the change of the relational operator in Line 3 and
how the returning value in Line 18 is altered by adding 1. Notice that the first
mutant is detected by the first test case included in Listing 3 while the second
is a live mutant as it is not detected by any of the two test cases in the same
Listing. This live mutant in fact, can be useful to see that those test cases are
not effective enough, in particular the assertion of the first test case.

// Mutant 1
2 long fact(int n) {

i f (n!=0)
4 return 1;

long result =1;

6https://massol.myxwiki.org/xwiki/bin/view/Blog/ComparingCloverReports

4

Data: P , TS , Ops
Result: score, live

1 M ← generateMutants(P,TS ,Ops)
2 foreach m ∈M do
3 run(TS ,m)
4 if one− test− fails then
5 killed ← m
6 end
7 else
8 live ← m
9 end

10 end

11 score ← killed
|M |

12 return score, live

Algorithm 1: Mutation analysis

6 for(int i=2; i<=n; i++)
result=result*i;

8 return result;
}

10
// Mutant 2

12 long fact(int n) {
i f (n==0)

14 return 1;
long result =1;

16 for(int i=2; i<=n; i++)
result=result*i;

18 return result +1;
}

Listing 4: Examples of mutants for the fact method

The ratio of detected or killed mutants to the total number of mutants
created for a program is named mutation score. This ratio is often used as a
quantitative measure to compare test suites and as a proxy to the fault detection
capabilities of a test suite. The greater the mutation score, the more faults shall
the test suite detect.

Algorithm 1 shows the general implementation of the mutation analysis.
Every mutant is analyzed in isolation (line 3). The result of one mutant is not
expected to affect the outcome of another. This is not always a guarantee in
practice. Both, the live mutants and the mutation score are the expected results
(line 12).

There are several tools available that provide effective implementations of
the mutation testing process. In the Java world the most popular alternative
is PIT. PIT or PITest7 targets Java projects and implements most traditional
mutation operators. The tool performs all transformations over the compiled
bytecode. It also implements some strategies for test prioritization, test selection

7http://pitest.org

5

http://pitest.org

and parallel test execution to speed up the process. PIT integrates with major
build systems such as Ant, Maven and Gradle. The default functionalities of
this tools can be extended via plugins. Other tools available are Javalanche8

which also manipulates bytecode and Major9 that operates at the source code
level, is integrated with the Java compiler and provides a mechanism to define
new mutation operators.

3.1 Limitations of mutation testing

Mutation analysis is a simple, yet effective, idea. However it hasn’t been widely
adopted by industry practitioners despite the decades of research invested in
the subject. The three main reasons often used against mutation testing[11, 10]
are:

• The cost of the analysis. The number of mutants that can be created is
huge even for simple programs making the analysis time consuming and
prohibitively expensive in terms of computation budget in some cases.

• The presence of equivalent mutants. The mutation operators may create
program variants which are equivalent to the original code and thus in-
distinguishable from live mutants. The automatic detection of equivalent
mutants is, in general and undecidable problem.

• The lack of integrated and production ready tools. Even when there are
several practical alternatives, most of them are created for academic pur-
poses. PIT is one of the few that has been created with an industry
exploitation mentality.

The work of Gopinath et al. [8, 7] studies the limits of the two assumptions
on which mutation testing is based. These authors investigated a total of 240000
bug fixes across 5000 programs written in four different programming languages
[8]. They concluded that a significant number of changes are larger than the
ones created by traditional mutation operators, which suggests that, in this
sense, real faults are different from mutants. They also observe that there are
differences in the patterns of changes among different programming languages
and that the mutation analysis also exhibits differences in this aspect. This fact
was also observed in practice by Petrovic and Ivankovic [14].

Kurtz et al. state that the mutation score is affected by the presence of
equivalent mutants and redundant mutants, that is mutants that are killed by
the same test cases that detect others.

3.2 Overcoming the limitations

The specialized literature gathers an important set of works directed to overcome
the problems of mutation testing.

8https://www.st.cs.uni-saarland.de/mutation/
9http://mutation-testing.org/

6

https://www.st.cs.uni-saarland.de/mutation/
http://mutation-testing.org/

Most proposals try to make mutation analysis more efficient. Untch [17]
states that these works mainly follow three strategies:

• do fewer these approaches “try to run fewer mutated program- s without
incurring intolerable loss in effectiveness”.

• do smarter which “distribute the computational expense over several ma-
chines or factor the expense over several executions by retaining state
information between runs”.

• do faster these “try to generate and run mutant programs more quickly”.

Works following the do faster and do smarter strategy propose to integrate
mutation operators in the compilation process to speed up mutation creation [4],
or propose a cloud infrastructure to distribute the analysis and make it faster
[3, 16]. Tools like PIT execute for each mutant only the tests that cover the
change. PIT also sorts the tests from so the closer to change are run first and
provides the possibility to execute tests concurrently.

A notable set of works has been devoted to reduce the number of mutants
in the analysis, (the do fewer approach). Some authors propose to randomly
sample the mutants to be used [2, 1, 18]. Other authors propose to use only a
subset of mutation operators [13]. Another subset of works explore the trade-
offs of mutant sampling and operator-based selection [19, 21, 20]. The use of
higher order mutants, that combine several first order traditional mutants, has
been explored as well as a way to reduce the execution time [15] and deal with
equivalent mutants [9].

Untch [17] proposed to use statement deletion operators. It shows a drastic
decrease on the number of mutants while maintaining the accuracy. The idea
was expanded by Deng et al. [6] and Delamaro et al. [?] to additional program-
ming languages and the deletion of bloks variables operators and constants.

3.3 The Google experience

Petrovic and Ivankovic [14] have recently described the use of mutation analy-
sis in the Google code base. They explain that the Google repository contains
about two billion lines of code and on average, 40000 changes are commited
every workday and 60% of them are created by automated systems. In this en-
vironment it is not practical to compute a mutation score for the entire codebase
and very hard to provide an actionable feedback.

Since most changes pass through a code review process, the authors argue
that this is the best location in the workflow to provide feedback about the
mutation analysis and eliminate the need for developers to run a separated
program and act upon its output. So live mutants are shown as code findings
in code reviews.

To make the mutation analysis feasible the proposed system creates at most
one mutant by covered line. The mutation operator is selected at random from a
set of available operators. To further reduce the number of mutants, they classify

7

each node of the Abstract Syntax Tree (AST) as important or non-important
(arid). To do this, they maintain a curated collection of simple AST nodes
classified by experts, that keeps updating with the feedback of the reviewing
process. Compound nodes are classified as arid if all their children are arid.
Uninteresting nodes may be related to logging, non-functional properties and
nodes seen as “axiomatic” for the language and thus the mutants are trivially
killed. This selection may suppress relevant live mutants but the authors state
that the tradeoff between correctness and usability of the system is good, as the
number of potential mutants is always much larger than what can be presented
to reviewers.

The system analyses programs written in C++, Java, Python, Go, JavaScript,
TypeScript and Common Lisp. It has been validated with more than 1M mu-
tants in more than 70K diffs. 150K live mutants were presented and 11K received
feedback. 75% of the findings with feedback were reported to be useful. The
authors also observed interesting differences related to the survival ratio of mu-
tants when contrasted with the programming language and mutation operator.

4 Extreme mutation, pseudo-tested methods and
Descartes

Niedermayr et al. [12] recently introduced extreme mutation analysis, It is an
alternative to traditional mutation that performs more coarse-grained transfor-
mations by eliminating, at once, all side effects of a method. For a void method
this approach removes all instructions from its body. If the method is not void,
then the body is replaced by a single return instruction with a predefined value.

Listing Listing 5 shows two extreme mutants that could be created for the
method in Listing 2.

1 // Extreme mutant 1
long factorial(int n) {

3 return 0;
}

5
// Extreme mutant 2

7 long factorial(int n) {
return 1;

9 }

Listing 5: Two mutans created with extreme mutation.

Extreme mutation creates much less mutants than the traditional approach
and can automatically avoid most transformations that could be equivalent to
the original code. Another benefit of this technique comes from operating at
the method level. This which eases the understanding of the underlying testing
problem.

In addition to the mutation score, extreme mutation pinpoints a list of worst
tested methods. In particular, the technique higligths methods executed by the
test suite but where no extreme mutant is detected while running the tests.
These methods are labeled as pseudo-tested in the work of Niedermayr et.

8

al.[12]. These authors report having found pseudo-tested methods in all the
14 projects they have studied, as result we have replicated with our own tool-
ing.

Listing 6 shows a class and a test class with one test case. In the absence of
more test cases, the incrementVersion method on Line 9 is pseudo-tested, as
its effects are never assessed. This is a common scenario in which this type of
methods appear.

1 class VList {
private List elements;

3 private int version;
public void add(Object item) {

5 elements.add(item);
incrementVersion ();

7 }

9 private void incrementVersion () {
version ++;

11 }

13 public int size() {
return elements.size();

15 }
}

17
class VListTest {

19 @Test
public void testAdd () {

21 VList l = new VList();
l.add (1);

23 assertEquals(l.size(), 1);
}

25 }

Listing 6: Example of a pseudo-tested method

4.1 Descartes

Descartes is a tool that implements extreme mutation and automatically detects
pseudo-tested methods. It has been conceived as a mutation engine plugin for
PIT. In PIT’s jargon, a mutation engine is a plugin that handles the discov-
ery and creation of mutants. The rest of the tool’s framework deals with the
project structure, test discovery and execution. Figure 1 captures the interre-
lation between PIT and Descartes. By piggybacking on PIT, the tool is able to
target Java programs being built with Ant, Gradle or Maven and using JUnit
or TestNG.

The tool can target most Java methods except constructors. It can be con-
figured with the constant literals that will be used as return values for the
methods analyzed. All Java primitive types and String are supported. Refer-
ence types are targeted using the null value and there is a special operator to
return an empty array where possible. Descartes also includes mechanisms to
avoid methods that could be not interesting based on their structure. It can
skip for example, simple getters and setters, receiving methods in delegation
patterns, deprecated methods and empty void methods. By default the tool
uses the values and operators shown in Table 1.

9

Figure 1: Interconnection between PIT and Descartes.

Table 1: Extreme mutation operators used in the comparison.

Method type Transformations

void Empties the method
Reference types Returns null
boolean Returns true or false
byte,short,int,long Returns 0 or 1
float,double Returns 0.0 or 0.1
char Returns ‘ ’ or ‘A’
String Returns “” or “A”
T[] Returns new T[]{}

10

Table 2: List of projects used to compare both engines, the execution time for
the analysis, the number of mutants created, mutants covered and placed in
methods targeted by both tools, mutants killed and the mutation score.

Descartes Gregor
Project Time Created Covered Killed Score Time Created Covered Killed Score

AuthZForce PDP Core 0:08:00 626 378 358 94.71 1:23:50 7296 3536 3188 90.16
Amazon Web Services SDK 1:32:23 161758 3090 2732 88.41 6:11:22 2141689 17406 13536 77.77
Apache Commons CLI 0:00:13 271 256 246 96.09 0:01:26 2560 2455 2183 88.92
Apache Commons Codec 0:02:02 979 912 875 95.94 0:07:57 9233 8687 7765 89.39
Apache Commons Collections 0:01:41 3558 1556 1463 94.02 0:05:41 20394 8144 7073 86.85
Apache Commons IO 0:02:16 1164 1035 968 93.53 0:12:48 8809 7633 6500 85.16
Apache Commons Lang 0:02:07 3872 3261 3135 96.14 0:21:02 30361 25431 22120 86.98
Apache Flink 0:14:04 4935 2781 2373 85.33 2:29:45 43619 21350 16647 77.97
Google Gson 0:01:08 848 657 617 93.91 0:05:34 7353 6179 5079 82.20
Jaxen XPath Engine 0:01:31 1252 953 921 96.64 0:24:40 12210 9002 6041 67.11
JFreeChart 0:05:48 7210 4686 3775 80.56 0:41:28 89592 47305 28080 59.36
Java Git 1:30:08 7152 5007 4507 90.01 16:02:03 78316 54441 40756 74.86
Joda-Time 0:03:39 4525 3996 3827 95.77 0:16:32 31233 26443 21911 82.86
JOpt Simple 0:00:37 412 397 379 95.47 0:01:36 2271 2136 2000 93.63
jsoup 0:02:43 1566 1248 1197 95.91 0:12:49 14054 11092 8771 79.08
SAT4J Core 0:53:09 2304 804 617 76.74 10:55:50 17163 7945 5489 69.09
Apache PdfBox 0:44:07 7559 3185 2548 80.00 6:20:25 79763 32753 20226 61.75
SCIFIO 0:24:14 3627 1235 1158 93.77 3:12:11 62768 19615 9496 48.41
Spoon 2:24:55 4713 3452 3171 91.86 56:47:57 43916 34694 27519 79.32
Urban Airship Client Library 0:07:25 3082 2362 2242 94.92 0:11:31 17345 11015 8956 81.31
XWiki Rendering Engine 0:10:56 5534 3099 2594 83.70 2:07:19 112605 50472 26292 52.09

4.2 Experiments

We have compared Descartes with Gregor, the default mutation engine for PIT
in a set of 21 open source projects. These are all projects that use Maven as
main build system, JUnit as main testing framework and are available form a
version control hosting service, mostly Github. In this comparison Gregor and
Descartes both used their set of default mutation operators.

Table 2 shows, for each project and mutation engine, the number fo mutants
created, covered by the test suite and killed. It also shows the raw mutation
score and the time required to complete the analysis. Figure 2 shows the relative
proportion of mutants created by Descartes with respect to the mutants created
by Gregor. The same relative relation is shown with respect to time in Figure 3.
It can be seen that Descartes creates less than 20% of the number of mutants
created by Gregor and takes less than 40% is all projects but one. In Figure 4
it can be noticed that the raw scores are somehow correlated. In fact Spearman
correlation coefficient results in 0.6 for the projects studied with a p-value of
0.003, which indeed indicates that there is a moderate positive correlation.

4.3 Real examples of pseudo-tested methods

During the experiments we have conducted we have also found that all inspected
projects have pseudo-tested which confirms the findings of Niedermayr et al..
Table 3 shows the number for each project.

Now we present four cases of pseudo-tested methods found in four different
projects with the help of Descartes.

Listing 7 shows an example found in Apache Commons Codec. The test case

11

Figure 2: Relative gain in the number of mutants of Descartes with respect to
Gregor.

Figure 3: Relative gain in time of mutants of Descartes with respect to Gregor.

Figure 4: Visual correlation between the raw scores produced by both tools.

12

Table 3: Number of pseudo-tested methods found on each project studied.

Project Pseudo-tested methods

AuthZForce PDP Core 13
Amazon Web Services SDK 224
Apache Commons CLI 2
Apache Commons Codec 12
Apache Commons Collections 40
Apache Commons IO 29
Apache Commons Lang 47
Apache Flink 100
Google Gson 10
Jaxen XPath Engine 11
JFreeChart 476
Java Git 296
Joda-Time 82
JOpt Simple 2
jsoup 28
SAT4J Core 143
Apache PdfBox 473
SCIFIO 72
Spoon 213
Urban Airship Client Library 28
XWiki Rendering Engine 239

13

actually has no assertion so isEncodeEqual is pseudo-tested. After placing the
assertion, it was discovered that the input in Line 3 was wrong.

1 public void testIsEncodeEquals () {
f inal String [][] data = {

3 {"Meyer", "M\u00fcller"},
{"Meyer", "Mayr"},

5 ...
{"Miyagi", "Miyako"}

7 };
for (f inal String [] element : data) {

9 f inal boolean encodeEqual =
this.getStringEncoder ().isEncodeEqual(element [1], element

[0]);
11 }

}

Listing 7: Covering test case with no assertion.

Listing 8 shows an example found in Apache Commons IO. The write

method invoked in Line 6 is pseudo-tested. If this method is emptied, the
output of both streams baos1 and baos2 is empty, and therefore the same, so
the test case does not fail.

public void testTee () {
2 ByteArrayOutputStream baos1 = new ByteArrayOutputStream ();

ByteArrayOutputStream baos2 = new ByteArrayOutputStream ();
4 TeeOutputStream tos = new TeeOutputStream(baos1 , baos2);

...
6 tos.write(array);

assertByteArrayEquals(baos1.toByteArray (), baos2.toByteArray ());

8 }

Listing 8: Test case verifying TeeOutputStream write methods.

Listing 9 shows an example found in Apache Commons Collections. The
add method represents a non-supported operation for SingletonListIterator
instances. But, if the body of the method is removed, the test case in Line 14
passes anyways. A fail invocation is needed after Line 20 to solve the situation.

class SingletonListIterator
2 implements Iterator <Node > {

...
4 void add() {

//This method was found to be pseudo -tested
6 throw new UnsupportedOperationException ();

}
8 ...

}
10

class SingletonListIteratorTest {
12 ...

@Test
14 void testAdd () {

SingletonListIterator it = ...;
16 ...

try {
18 //If the method is emptied , then nothing happens

//and the test passes.
20 it.add(value);

} catch(Exception ex) {}
22 ...

14

}

Listing 9: Class containing the pseudo-tested method and the covering test
class.

Listing 10 shows an example found in Amazon Web Services Java SDK.
The prepareSocket method is pseudo-tested, as it calls setEnabledProtocols
(Line 4) and the assertion is placed inside this second method (Line 17), then
when prepareSocket is emptied, the condition is never verified and the test
passes.

1 class SdkTLSSocketFactory {
protected void prepareSocket(SSLSocket s) {

3 ...
s.setEnabledProtocols(protocols);

5 ...
}

7 }

9 @Test
void typical () {

11 SdkTLSSocketFactory f = ...;
// prepareSocket was found to be pseudo -tested

13 f.prepareSocket(new TestSSLSocket () {
...

15 @Override
public void setEnabledProtocols(String [] protocols) {

17 assertTrue(Arrays.equals(protocols , expected));
}

19 ...
});

21 }

Listing 10: A weak test case for method prepareSocket.

The nature of these methods can be understood even for outsiders to these
projects. To the point that we were able to explain the issue to their development
teams and propose pull request which were all accepted 10

4.4 Partially-tested methods

In our experiments we have also seen that methods with mixed results, that is,
with live and killed extreme mutants at the same time, often point to testing
issues. We call these methods partially-tested methods. Listing 11 shows a
simplified extract of a real case we have found. The equals method in Line 8 is
partially-tested. If the body is changed by return false, the change is detected
but return true passes. The condition of the assertion in Line 20 is always
false in Java, so it is a mistake made by the developer whose intention was to
test the inequality.

1 public class AClass {
private int aField = 0;

3
public AClass(int field) {

10https://github.com/apache/commons-codec/pull/13, https://github.com/apache/

commons-io/pull/61, https://github.com/apache/commons-collections/pull/36,
https://github.com/aws/aws-sdk-java/pull/1437

15

https://github.com/apache/commons-codec/pull/13
https://github.com/apache/commons-io/pull/61
https://github.com/apache/commons-io/pull/61
https://github.com/apache/commons-collections/pull/36
https://github.com/aws/aws-sdk-java/pull/1437

5 aField = field;
}

7
public bool equals(object other) {

9 return other instanceof AClass && ((AClass) other).aField == aField;
}

11 }

13 public class ACLassTest {
@Test

15 public void test() {
AClass a = new AClass (3);

17 AClass b = new AClass (3);
AClass c = new AClass (4);

19 assertTrue(a.equals(b));
assertFalse(a == b);

21 }
}

Listing 11: Example of a partially-tested method.

Descartes also reports these methods.

4.5 Taking Descartes to the CI

There are several alternatives to bring Descartes to a Continuous Integration
environment. The XWiki project, for example, has implemented a strategy sim-
ilar to the one described in Section 2.1. The threshold is set for the mutation
score computed by Descartes for each module. By inspecting the methods re-
ported by the tools, the developers have been able to improve their test code
impacting more than 20 test classes between modifications and additions. They
also report increments in code coverage between 1% to 3% and between 1% and
7% in mutation score 11. In a peculiar case, they were able to spot a function-
ality that could be simplified. Figure 5 shows an example of the output of this
plugin.

Descartes could be used in the CI to monitor the methods in the project. A
Jenkins plugin12 has been created. This plugin reports the number of methods
that are covered by the test suite and the number of pseudo-tested method in
the codebase. It can be used to monitor both numbers as the project evolves.

A third alternative focuses on analyzing pull requests in Github. We have
built a Github App13 that leverages the Github check run API14. When a pull
request is made to a repository where the application is installed, Github will
send a notification to our CI server with the required information to execute
the analysis. The main goal is to plant mutants only in the changed code so
the analysis can be faster. The pseudo-tested methods are shown inline in the
pull request report. Figure 6 shows examples of the output of this application
as presented to developers in the Github website.

11https://github.com/STAMP-project/descartes-usecases-output/tree/master/xwiki
12https://github.com/STAMP-project/jenkins-stamp-report-plugin
13

14https://developer.github.com/v3/checks/runs/

16

https://github.com/STAMP-project/descartes-usecases-output/tree/master/xwiki
https://developer.github.com/v3/checks/runs/

Figure 5: Output of the Jenkins plugin that uses Descartes to monitor pseudo-
tested methods.

Figure 6: Descartes Github Application using the check run API.

17

References

[1] Allen Troy Acree, Jr. On Mutation. PhD Thesis, Georgia Institute of
Technology, Atlanta, GA, USA, 1980.

[2] Timothy Alan Budd. Mutation Analysis of Program Test Data. PhD Thesis,
Yale University, New Haven, CT, USA, 1980.

[3] Pablo C. Cañizares, Alberto Núñez, and Juan de Lara. OUTRIDER: Opti-
mizing the mUtation Testing pRocess In Distributed EnviRonments. Pro-
cedia Computer Science, 108:505–514, 2017.

[4] R. A. DeMillo, E. W. Krauser, and A. P. Mathur. Compiler-integrated
program mutation. In [1991] Proceedings The Fifteenth Annual Interna-
tional Computer Software Applications Conference, pages 351–356, Septem-
ber 1991.

[5] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints
on Test Data Selection: Help for the Practicing Programmer. Computer
Magazine, 11(4):34–41, April 1978.

[6] L. Deng, J. Offutt, and N. Li. Empirical Evaluation of the Statement
Deletion Mutation Operator. In Verification and Validation 2013 IEEE
Sixth International Conference on Software Testing, pages 84–93, March
2013.

[7] R. Gopinath, C. Jensen, and A. Groce. The Theory of Composite Faults.
In 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST), pages 47–57, March 2017.

[8] Rahul Gopinath, Carlos Jensen, and Alex Groce. Mutations: How close
are they to real faults? In Software reliability engineering (ISSRE), 2014
IEEE 25th international symposium on, pages 189–200. IEEE, 2014.

[9] Marinos Kintis, Mike Papadakis, and Nicos Malevris. Employing second-
order mutation for isolating first-order equivalent mutants. Software Test-
ing, Verification and Reliability, 25(5-7):508–535, August 2015.

[10] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala. Overcoming the
Equivalent Mutant Problem: A Systematic Literature Review and a Com-
parative Experiment of Second Order Mutation. IEEE Transactions on
Software Engineering, 40(1):23–42, January 2014.

[11] Jakub Možucha and Bruno Rossi. Is Mutation Testing Ready to Be
Adopted Industry-Wide? In Product-Focused Software Process Improve-
ment, Lecture Notes in Computer Science, pages 217–232. Springer, Cham,
November 2016.

18

[12] Rainer Niedermayr, Elmar Juergens, and Stefan Wagner. Will my tests tell
me if I break this code? In Proceedings of the International Workshop on
Continuous Software Evolution and Delivery, pages 23–29, New York, NY,
USA, 2016. ACM Press.

[13] A. Jefferson Offutt, Gregg Rothermel, and Christian Zapf. An Experimen-
tal Evaluation of Selective Mutation. In Proceedings of the 15th Interna-
tional Conference on Software Engineering, ICSE ’93, pages 100–107, Los
Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[14] Goran Petrovic and Marko Ivankovic. State of Mutation Testing at Google.
page 9, 2018.

[15] Macario Polo, Mario Piattini, and Ignacio Garćıa-Rodŕıguez. Decreasing
the cost of mutation testing with second-order mutants. Software Testing,
Verification and Reliability, 19(2):111–131, June 2009.

[16] Iman Saleh and Khaled Nagi. HadoopMutator: A Cloud-Based Mutation
Testing Framework. In Ina Schaefer and Ioannis Stamelos, editors, Software
Reuse for Dynamic Systems in the Cloud and Beyond, Lecture Notes in
Computer Science, pages 172–187. Springer International Publishing, 2014.

[17] Roland H. Untch. On Reduced Neighborhood Mutation Analysis Using a
Single Mutagenic Operator. In Proceedings of the 47th Annual Southeast
Regional Conference, ACM-SE 47, pages 71:1–71:4, New York, NY, USA,
2009. ACM.

[18] Weichen Eric Wong. On Mutation and Data Flow. PhD Thesis, Purdue
University, West Lafayette, IN, USA, 1993.

[19] Weichen Eric Wong and Aditya P. Mathur. Reducing the cost of mutation
testing: An empirical study. Journal of Systems and Software, 31(3):185–
196, December 1995.

[20] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid. Operator-based and
random mutant selection: Better together. In 2013 28th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), pages
92–102, November 2013.

[21] Lu Zhang, Shan-Shan Hou, Jun-Jue Hu, Tao Xie, and Hong Mei. Is
Operator-based Mutant Selection Superior to Random Mutant Selection?
In Proceedings of the 32Nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1, ICSE ’10, pages 435–444, New York, NY,
USA, 2010. ACM.

19

	Introduction
	Code coverage
	The XWiki experience

	Mutation testing
	Limitations of mutation testing
	Overcoming the limitations
	The Google experience

	Extreme mutation, pseudo-tested methods and Descartes
	Descartes
	Experiments
	Real examples of pseudo-tested methods
	Partially-tested methods
	Taking Descartes to the CI

